Molecular dynamics simulation investigation on the plastic flow behaviour of silicon during nanometric cutting
نویسندگان
چکیده
Molecular dynamics simulation (MDS) was carried out using two types of interatomic potential function (a modified version of the Tersoff potential and an analytical bond order potential (ABOP)) to acquire an in-depth understanding of the material flow behaviour of single crystal silicon during nanometric cutting on three principal crystallographic planes and at different cutting temperatures. The key findings were that (i) the substrate material underneath the cutting tool was observed for the first time to experience a rotational flow akin to fluids at all the tested temperatures up to 1200 K. The degree of flow in terms of vorticity was found higher in the (111) crystal plane signifying better machinability on this orientation in accord with the current pool of knowledge (ii) an increase in the machining temperature reduces the springback effect and thereby the elastic recovery and (iii) the cutting orientation and the cutting temperature showed significant dependence on the location and position of the stagnation region in the cutting zone of the substrate. However, a major anecdote of the study was that
منابع مشابه
Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting
Cubic silicon carbide (SiC) is an extremely hard and brittle material having unique blend of material properties which makes it suitable candidate for microelectromechanical systems and nanoelectromechanical systems applications. Although, SiC can be machined in ductile regime at nanoscale through single-point diamond turning process, the root cause of the ductile response of SiC has not been u...
متن کاملStudy on nanometric cutting of germanium by molecular dynamics simulation
Three-dimensional molecular dynamics simulations are conducted to study the nanometric cutting of germanium. The phenomena of extrusion, ploughing, and stagnation region are observed from the material flow. The uncut thickness which is defined as the depth from bottom of the tool to the stagnation region is in proportion to the undeformed chip thickness on the scale of our simulation and is alm...
متن کاملAn atomistic simulation investigation on chip related phenomena in nanometric cutting of single crystal silicon at elevated temperatures
Nanometric cutting of single crystal silicon on the different crystal orientations and at a wide range of temperatures (300 K-1500 K) was studied through molecular dynamics (MD) simulations using two sorts of interatomic potentials, an analytical bond order potential (ABOP) and a modified version of Tersoff potential, so as to explore the cutting chip characteristics and chip formation mechanis...
متن کاملMolecular dynamic simulation for nanometric cutting of single-crystal face-centered cubic metals
In this work, molecular dynamics simulations are performed to investigate the influence of material properties on the nanometric cutting of single crystal copper and aluminum with a diamond cutting tool. The atomic interactions in the two metallic materials are modeled by two sets of embedded atom method (EAM) potential parameters. Simulation results show that although the plastic deformation o...
متن کاملAnisotropy of Single-Crystal Silicon in Nanometric Cutting
The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018